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Polymer chain in a flow through a porous medium: A Monte Carlo simulation
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We study conformational and dynamic properties of dilute polymer solutions drifting through a random
environment of obstacles at varying intensity of the external Bekhd of the host matrix densit@,, using
dynamic Monte Carlo simulation of an off-lattice bead-spring model. The presence of obstacles is found to
influence strongly the conformational properties of the drifting chains: with growing strength of thB fid
Cob="0 the chain mean siz@gyration radiug Ré, rapidly increases while the ratio between the end-to-end
distance,Rée, and Rg drops essentially below the usual value of 6, typical in the absence of drift, suggesting
a hooflike shape of the chain with both ends directed along the external field vector. We confirm the finding of
G. M. Foo and R. B. Panddyhys. Rev. E51, 5738(1995] of a critical strength of the external fieRl. above
which the permeability of the host matrix sharply drops. A detailed study of this phenomenon suggets that
may be related to a dramatic growth of a specific “capture” time, characterizing the interaction of the chains
with the obstacles, so that a simple model describing the drift of chains among obstacles may be shown to
reproduce our findinggS1063-651X97)10912-9

PACS numbd(s): 36.20—r, 82.45+2z, 87.15-v

I. INTRODUCTION media. The Hookean spring model in a strong flow and dense
environment even predicts a catastrophic situation of perma-
In a previous publication,1] a scaling analysis of chain nent growth of the gyration radius to infinity. The numerical
conformations, diffusivity, and characteristic relaxation calculations performed by Chilcott and Rallist3] for a
times of a polymer in a porous medium was suggested isuspension of FENE dumbbells, passing cylindrical and
order to interpret the influence of a random environment orspherical surfaces, revealed that the nonlinear part of the
the static and dynamic properties of the macromolecule. AENE potential limits the growth of the dumbbell link to a
natural extension of these investigations would be the studjarge fraction of its maximum extensibility. Several models
of the drift of a polymer chain through a porous medium,for the stretching conformations of polymers in extensional
caused by external fielthiag. This problem is closely re- flows based on experimentd,7] and theoretical16,17,22
lated to ion and mass transport in complex polymer mixturesstudies are known in the literature.
molecular permeation in gel@lectrophoresjs sedimenta- In order to overcome experimental difficulties as well as
tion studies, marine geosciences, water flooding in secondagyoid severe approximations in the analytical treatment,
oil recovery, etc., and has been the subject of considerableomputer simulations could appear to be especially suited as
interest in recent yeai2]; it has been addressed by experi- a means to get more insight into the complexity of the prob-
mental [3-12], theoretical [2,13—-15, and simulational lem. An attemp{18,19 to simulate polymers driven through
[13,16—19 studies on this subject. a porous medium in two dimensions, using a reptational
The non-Newtonian behavior of a polymer solution Monte Carlo technique, confirmed the expected growth of
[20,21] is an essential property to investigate. Experimentathe gyration radius with increasing drift rate. However, these
measurementp3,11] reveal that above a certain velocity a studies reported a decrease of the growth with increasing
very dilute polymer solution, driven through cavities of density of the porous mediufii9], contrary to the expected
packed beads, shows a non-Newtonian behavior manifesteteoretical predictions, cited above. These simulations of the
by an anomalous increase of the friction factoof the me-  permeability of the media in dependence of the drift rates
dium with increasing flow velocity. This, observed also by confirmed also the experimentally obsenf&ill] decrease
Vissmann and Bewersdorfil0], is interpreted as being due of the permeability above some critical flow rate, character-
to an interaction between extension and shear deformatiornistic for the system, albeit no interpretation of these results
and may be attributed to the dominance of extension stredsas been suggested. Given that the applicability of repta-
[3]. tional algorithms to nonequilibrium studies of polymers is
Theoretical observations based on dumbbell models, e.gguestionable in principle, it was clear that more studies are
by either a “linear” one with a Hookean spring connector needed so that a comprehensive understanding of the prop-
force between the two beads, or by a nonlinear FENE  erties of polymer drift through porous media is achieved.
nitely extendable nonlinear elasticonnecting potential, In this paper we report simulation results, based on an
show[2,15] stretching of the polymers during flow in porous off-lattice bead-spring model of a polymer ch&®8], placed
in a three-dimensional random medium of obstacles, studied
by a dynamic Monte Carlo simulation technique. The model
*Present address: Max-Planck-Institut fur Polymerforschunghas been used before in a number of studies of polymer
Ackermannweg 10, D55021 Mainz, Germany. Electronic addresssolutions in the bulj24], at interfaceq25], in constrained
yamakov@ipchp.ipc.acad.bg geometried26], etc., and is known to reproduce faithfully
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the static properties and the Rouse dynamics of long macrasenting “effective bonds,” using a FENE potential:
molecules with excluded volume interactions. Although the
model does not consider hydrodynamic interactions betweel FEne(")
molecules or the inhomogeneity of the flow of the solvent

2
around the introduced obstacles, as done in some theoretical — ERZIn 1— ( r—IO) } for l,—R<r<ly,+R,
studieq 17,22, it reproduces chain conformations, similarto = 2 R
those predicted by these works. o, otherwise,

As in our previous papdrl], in the present investigation (1)

we use as a host matrix an equilibrated dense solution of ) ) )

identical polymer chains that is frozen at different concentra\Wherer is the distance between two successive bebgls,
tions C,p. We then let a single chaifor a small number of =0.7 is the unperturbed bond lengf:=1m,,—1,=0.3, and
noninteracting chainsdriven by an externalbiag field B, ~ k/2=20 (in our units of energkgT=1.0) is the elastic con-
move through these realizations of the random media. Th&tant of the FENE potential, which behaves as a harmonic
simulational procedure is briefly explained in Sec. Il. A brief poter21t|al for r—1o<R, that is, Ugeng(r~Io)~—(k/2)(r
analysis of the measured quantities at the long-time regime is lo)° but diverges logarithmically for botli—I,,, and
made in Sec. Ill. The conformational properties of a driven’ —!min=2lo—Imax. We choose our unit of length such that
chain through a random medium are then presented and dibmax=1 and then ,;,=0.4.

cussed in Sec. IV where they are shown to agree well with The nonbonded interaction is described by a Morse poten-
the quoted theoretical and experimental observations. In Setal,

V we focus on the mobility of the chain at different drift _ _ _ _ e

rates, demonstrating its non-Newtonian behavior at high drift UM = em{exH —2a(r = min) ] = 28X ~a(r = Fmin) I}
velocity. We also suggest a simple phenomenological inter- for 0<r<oo, 2
pretation of our findings. Results for the longitudinal and

lateral components of the effective diffusivity, as introducedWhere rmin=0.8, ey=1, and the large value oa=24

by Saffman[27] for a flow of a dynamically neutral material Makes interactions vanish at distances larger than unity, so
through a porous medium, are then presented in Sec. VI. W@a.t an eff|C|ent|.nk—ceII algorithm[23] for short-range inter-
conclude our report in Sec. VIl with a brief summary of our actions can be implemented.

observations and conclusions. The radius of the beads and the interactions, Efs(2),
have been chosen such that the chains may not intersect
Il. THE MODEL themselves or each other in the course of their movement

within the box.
In our off-lattice bead-spring model of a polymer chain A standard Metropolis algorithm is used, whereby an at-
[23,1], placed in a random medium of obstacles, one dealsempted move of a randomly selected particle in a random
with N “effective monomers,” connected by springs, repre- directionAx,Ay,Az is accepted with probability, equal to

eX[{ - (Enew_ BAXx— Eold)/kBT] for Enew_ BAX> Eold )
|1, otherwise,

(€©)

where E,.,, and E, 4 are the energies of the new and old 1 N
system configurations. The external field, or bBRsis intro- Ré:NE ((rn—rc,m)z), (4)
duced in the system as an additional term in the Boltzmann n=1
probability in Eq.(3) whereAx denotes the attempted move
distance in the direction, which is the direction of the bias \\here
field too.
The porous medium is the same as in our previous paper
[1]. It consists of an initially relaxed and then frozen network 1 N
of polymer chains of lengthN=16, and the monomers have rc.m.:NnZl In 5)
the same size as those of the diffusing chain. The concentra-
tion of the networkC,y, is varied and the behavior of diffus-

ing chains of various lengtiN at various drift ratesB is  andr, is the radius vector of thath bead of the chain.

studied in the good solvent regimegT=1.0, since from  |n addition to the conventional mean square displace-
previous studies of the model it is known that théeempera-  ments of the middle monomegs ,g,, in an absolute- and in
ture kgT,=0.62[24]. a center-of-mass coordinate system, and of the center of

The static properties of the chains are studied by measugravity of the chainsg;, used in previous investigations
ing their mean square radius of gyratiﬁté, [23,1,
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g1() ={[rna(t) =T n2(0)1%), 10° '
e---o g, C,=0.125
92(t) = ({2 =T em(D1=[rn2(0) =T cm(0)1}2),
10°
ga(t):<[rc.m.(t)_rc.m.(o)]2>v (6)

we define here several mean square displacements, relativ;— ;g

to thetotal center of mass of the polymer flui, ,, , e
91_em(®=({Irnal) = Rem(D]-[rnz(0) ~Rem(O D), &
v
gS_c.m.(t) = <{[rc.m.(t) —Rem(D)]=[rem(0)— Rc.m.(o)]}2>1
(7 o

consisting of many noninteractingnterpenetrable chains
(each driven polymer in the system does not “feel” the other
driven polymers and can penetrate through themn the 10” o~
presence of an external field the chain drifts through the me- Time [MCS]
dium and the mean square displacement of its center of mass

is a quadratic function of tim¢measured in Monte Carlo  FIG. 1. Mean square displacements of the central ligaden-
steps(MCS) per monomer(bead, whereby 1 MCS is the ter of massg; of a polzymer c_hann, and the center of mass of the
time needed for all monomers to perform an attempted mov¥nole polymer fluidR; , vs time for N=32 andB=0.25 for a
Ax,Ay,Az<+0.5 in a random directidn Thusgs(t) from  Series of densitie€, of the host matrix.

Eq. (6) yields the average velocity of a chain:

10

and in the highest concentration regime they contain up to
V2= lim[gs(t)/t2]. (8) 24576 fixed monomers in 1536 chains of lentk 16 that
t—soo form the porous media. The diffusing chains, immersed into
this host matrix, have been chosen with lengths of 8, 16, and
In the long-time limitVy must coincide with the average 32 monomers. The intensity of the external fi@ds varied
velocity of the total mass center of the fluid, defined as  from 0.0625 to 1.5 relative unitén our casesnergyin kgT
) ) 5 ) per distancein unit lengthg. To obtain better statistics we
Vem= Im[Re n (D/t7]. (9 performed three independent measurements for each random
o media, changing the direction of the field along the v,

The difference betweexiy andV, ,, may serve as a con- 2ndz axes, and then averaged the results.

trol parameter for the statistics of our measurements.
Similarly to the case of a system without bias, a definition lll. LONG-TIME REGIME
for the so-calleceffective diffusivityf{27] can be introduced
using the ratio of the relative mean-square displacement of All our results and analysis presented in this paper con-
the center of gravity of a single chagn . ,(t) with respect cern the long-time behavior of the chains drifting through the

to timet: porous medium in a sense that all measured quantities have
already reached their long-time asymptotic limits. To reach
6D = lim[gs_cm(t)/t]. (100 and explore these limits for each system we used four se-
t=e quential runs of 10 MCS each(the final configuration of a

With the various types of displacements introducedgiven run becomes a starting configuration for the nexj one
above, a number of characteristic relaxation ti,ma_s and the measurements were performed at everyMOS
’ S Zem. starting from the second run after the system has been equili-
72, T3_cm. Can be defined: brated for 16 MCS.
/2 _1/p2 In Fig. 1 one can verify that the mean-square displace-
91_em(71_em) =(Rghr  92(72) = 3(Ry), ments of the longest chaindNE32) studied,g;, gs, and
(11) RZ . coincide well at times 10-10’ MCS for all densities of
the host matrix aB<B.~0.25 (see below. Note that the
The index ., of 71 om and s om Stands for the fact that value of these displacements goes up to-1® square cell
they are calculated in a moving coordinate system connecteahits, which, compared to chain siR§=6.3(Fig. 8), means
with R.,, at variance with their conventional definition that the polymers have traveled a distance ofzelmg)Rg
[28,1]. The definition ofr, is also slightly modified by using during the MC simulations and the long-time regime of drift
a different prefactor 1/3 instead of 2J38,1] because of the has been successfully reached. As long as the travel distance
non-Gaussian elongated conformation of the chains in & between 10 and #Obox sizes, the data might be influ-
flow. This does not change the principal behaviorrgfout ~ enced by certain finite-size effects. Such effects are difficult
only decreases its time scale so that better statistics can e estimate in our model since their high computational effi-
used in its determination. ciency is based on bitwise operations so that most quantities,
The simulations have been performed in a volume &f 32 such as the box size and the chain length, must be multiples
effective cells of size 1 using periodic boundary conditions,of two. Thus the next box size of 84cubic cells would

g3_c.m.( 7'3_c.m) =0a( 7'3_c.m)-
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FIG. 2. Instantaneous values of the mean-square gyration radiu
at different times during a simulational run. The measured values
are averages over 16 chains\bE 16 at three sequential runs of"10
MCS. The measurements were performed after an initial period of°
10" MCS has elapsed. The straight horizontal lines mark the averg
age values of all the measurements, performed periodically ever
10° MCS (not all of them are shown on the figore

FIG. 3. Correlation functions of the end-to-end chain distance
r the systems from Fig. 2.

ig. 2 for one of the highest obstacle concentrati@hg
¥£0.625in a very long time interval. Even at the strongest
field, B=1.0, we do not detect any systematic drift of the
instantaneous values R@ with time. The straight lines mark
accommodate 8 times more particles at the same density ¢fie average values of all the measurements evetyMKDS
the medium and would exceed the operational memory of @&not all are shown on the figureThe data at a very weak
modern RISC Work station computer. We have tried therebiasB=0.0625 are given for comparison.
fore to allow for such finite-size effects by changing the host The length of the time intervals of 10MCS, used in the
matrix and the direction of the bias field during simulations.simulation, can be assessed by studying the time correlation
The long-time steady state variation of conformationalbetween system configurations, for instance, of the end-to-
guantities such as the radius of gyration is demonstrated iand chain distance, defined as

N=i P

[UN=DIP) X D (Ria— (R)(Rj4i1.a—(R))

=1 a=1

Reorlti) = ) (12

N P
(1/N)(1/7>)E1 21 (Ria—(R))?
j=1 a=

whereR;,, is the end-to-end distance of the chain, mea-
sured at timet;,

behavior of the chains even beyoBd=B., assuming that
the measured quantities are not very far from their equilib-
rium values, as can be seen from Figs. 1 and 2.

Rjaz\/[rN(tj !a)_rl(tj la)]z (13)

and(R) is its mean value, averaged over all measuremghts
and number chain®.
The results for the systems shown in Fig. 2 are presented
in Fig. 3. For the cases &< B, (for N=16 B;~0.5 as will In a three-dimensiondBD) plot in Fig. 4&) we show the
be shown belowthe configurations after times>10° do not ~ variation of (R3) of a driven chain through porous media
correlate practically. FoB>B,, however, the time needed Wwith increasing external fiel@ at different densitie€,, of
to reach a new uncorrelated configuration rises exponerthe medium. While in the absence of obstacleg,=0, no
tially, and forB=1.0 even 16 MCS are not enough to ob- dependence of the gyration radius on the figlts observed,
tain a completely independent configuration. as it should be, even a slight inclusidd,,=0.125, of fixed
Thus one may claim that f@<B. we have reached the particles in the system leads to a significant increase of the
long-time steady-state regime for all of the data presentegize of the chains at higher drift rateB% 0.5). The ratio
below. Our analysis concerns mainly this regime, althougtbetween Iongitudinal(Ré) and transversa(Rso compo-
we give some results and a possible interpretation of the@ents, plotted in Fig. @), indicates that this increase is

IV. CONFORMATIONAL PROPERTIES OF A CHAIN
DRIVEN THROUGH POROUS MEDIA
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FIG. 5. The ratio between the end-to-end mean-square distance

GCob = 0.000 -— () and the mean-square gyration rad(t@Q/(Ré) vs bias for series
Sop 242 o of densitiesC,;, of the host matrix.
Cob =0.375 -&—
R2/RE ¢ Sty J
s Cob = 0.750 ~+— check this during the present study.
°r It is interesting to note that the typical conformations of

the chains, usually observed in our simulatidfrgy. 6), are
similar to those reported for polymers in extensional flows
[6,7,16,17,22 in spite of the fact that we do not consider
any inhomogeneity of the flow of the solvent, modeled by
the biased field B=const everywhere in the systgin be-
tween the obstacles. This unexpected similarity may be due
to the fact that the acceptance rate in the simulations is dif-
ferent away from an obstacle and close to it—in a space free

1 [t}

FIG. 4. (a) Mean-square gyration radillié measured in the way
presented in Fig. 2 an) the ratio of its longitudinal and transver-
sal component$R§|>/(Rgt) vs bias for a series of densiti€,, of
the host matrix.

mainly due to stretching of the polymer along the drift direc-
tion. If such a stretching is assumed, one must then expect a
increase of the ratigR3.)/(R%), where(RZ,) is the mean
square end-to-end distance, in comparison with that of a
chain in free space. For a Gaussian coil its theoretical value
is 6, while for a stretched linear string it is 12. However, in
Fig. 5 one can clearly see that after a slight increase of up tc
6.4, a decrease ¢R3.)/(R?%) with increasing takes place,
the ratio going down to values even below 5 at intermediate
matrix densityC,,=0.25-0.50. This effect is weakened at
high obstacle concentratio%,,=0.75 because at these den-
sities the conformation of the diffusing chain is governed
strongly by the configuration of the pores in the mediurh

A simple explanation of this decreasing ratio is to assume a
hooflike form of the chain with ends directed along the drift
(Fig. 6), so that the two end beads get closer to one anothe
as they are more mobile than the inner beads, the latter bein
frequently hooked in the presence of obstacles. This is ob-
served even for a chain driven in free space, as one cal
notice in Fig. 5 forC,,=0. Of course, one can attribute this
to finite-size effects and can expect that in the limit of infi- £, 6. A snapshot of a typical hooflike form of a driven 32
nitely long chains this decline afRZ.)/(R3) should not be  peads chair(light beads at overcritical biasB=0.625 through a
observed. Because we were forced to limit our simulations talilute medium of obstacleglark beadsof densityC,,=0.125. The
chain lengths of 32 beads, however, we were not able tdirection of the drift is indicated by the arrow.
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FIG. 7. Average square bond lengtt?), measured in square _ _ _
cell unit length, vs bia® for a series of densitie€,, of the host FIG. 8. Mean-square gyration radil® calculated in the ab-
matrix. sence of obstacles by means of conventional Monte Carlo technique
(open circleg and using a reptational Monte Carlo algorittifiied
triangles.

of obstacles the acceptance rate can be 10 or more times

larger than that in a dense system. This introduces a kind %ptational algorithm, which they use in their study. In a
inhomogeneity in the dynamics of the system, similar to thateptational algorithm one moves the two end beads of the
caused by extensional flow. An original kink model for un- chain only, which are thus more mobile and, in the presence
raveling of a polymer chain in a strong extensional flow isof a bias field, stretch their bonds much more than the inner
presented by Larsdri7]. He states that the increasing of the peads do. In the process of reptation the end monomers be-
extensional flow decreases the number of kinks along theome inner monomers and these elongated bonds become
chain, thus straightening it along the flow. An earlier theo-ponds inside the chain. Thus after a short tima\¢) all the
retical analysis, done by Rysk[i22], who refers to the ex- ponds of the chain will be abnormally elongated, which will
perimental results of James and Saring@}, reveals that affect the size of the coil as a whole. We performed a test
such unraveling starts at the middle and spreads throughogbplying reptational algorithm in comparison to the conven-
the ends of the chain, thus forming a “coil-string-coil” pic- tional one whereall the monomers are moved in a random
ture. Ryskin argues that this model is favored by the well-panner. Our results fofR2) with the reptational algorithm
known experimental fad9] that the chain scission in shear reproduce those reportedg by Foo and Par{d&¥. In Fig. 8

degradation occurs alr’r_lost precisely at the midpoint of the, . plot the(Ré) vs B relationship in free spac@s there the
chain. The typical chain conformation that we observe ayjitterence is most obvious Evidently, while the conven-
high bias is a good example of the “coil-string-coil” model. 4, aigorithm produces no dependence of the chain size on

In Fig. 6 one can notice that the driven polymer is moreg \yiihin the range of statistical errors, the reptational algo-

coiled at the ends as compared to the middie part, where it fthm shows a systematic increase of the chain size with the
completely stretched. iasB

The predicted elongation of the average square bond 5 o conclusion is that the reptational algorithm is

2 . .
Ibength(l ),hbaged anlasdlumpbelll mOdelf.W'thdFENE pof[ent|al not applicable for the simulation of systems in a drift, be-
etween the bead®,13,19, is also confirmed in our simu- cause it affects in a wrong way not only the dynamic, but

Giso thestatic properties of the driven macromolecules, in
‘contrast to the case of equilibrium polymer systems, where
&he reptational algorithm does not affect the static properties.

extensions of the bonds occur for sufficiently strong fields
B, and predominantly in the intermediate range of obstacl
densities.

At this point it should also be noted that our results for the
conformation of a driven chain disagree with the earlier find- V. MOBILITY OF A POLYMER CHAIN
ings of Foo and Panddyl9], as has been already mentioned DRIVEN THROUGH A POROUS MEDIUM
in the Introduction. The main difference is in the behavior of In the case of a slow drift through a dilute porous me-
the observed rate of conformational elongation of the driveryium, when the conformation of the driven chain is not af-
chain with increasing of the obstacle concentration. Whilefected essentially by the drift, the average velocity of the
our results(in agreement with the cited theoretical analysis molecule is a linear function of the mobility of the chain
show a definite increase of the elongation with increasing th@ng the total external fordg,, acting on it{30], which in our
media densityFig. 4@] and no change 0¢R§> with Bin  case isBN:
the absence of obstacles, the results of Foo and Pdid¢y
show maximal elongation of the driven chain in the free V= ufior= uBN. (19
space, which then rapidly decreases with increasing the ob-
stacle density. Our analysis of this point shows that the be- Applying Einstein’s formula, which linkg: with the dif-
havior observed by Foo and Pandéd@] is an artifact of the fusion coefficientD,
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Dn=ukgT, (15 50 —
o C,,=0.125
we obtain a relation for the average velocity as a function of ogo.,=0-25 @
the diffusion coefficient and the bias: LA ic::gf;? !
e > C, = 0.625 ! -
=uBN= [
Vo=DoBN/KgT. (16) % . *‘\;ijgc)(DN(u/T)BN o .
Q ’ !
Here the index 0 @D denotes the diffusion coefficient, mea- § - :
sured when no external field is applid®=0, andV, stands T Qo
for a “zero” approximation, i.e., this relation is applicable ‘a s ! -
only for slow drift in a dilute medium. =2 P D N
The simulation data, represented in Fig&)99(c) con- 10r kT V )
firm Eq. (16) in the region of weakf,,; (BN<4, for N PG e T8
=8,16,32) at dilute regimes. The straight lines drawn . L ‘ "
through the origin of the coordinate system in Fig&a)9 00 os BiaLso e

9(c) indicate the exact relation in E@16) with Dy, having
the values oD, measured for the same systems without an ~ 2° -
external field 1]. A very good agreement of these lines with 5

o---0C,=0.00
o C,, =0.125 (b)

. . . ¢ Cy=0.25
the measured data is observed for all the chain lengths ir C,,=0375
dilute media. Substantial discrepancies are seen only at hig :g::g;gg

!

V=uBN=(D, 5.,/TIEN

density of the porous medium. The regions of linearity of A VB

Vn(B) correlate clearly with the regions of minor conforma-
tional deformations of the chairsee Figs. @) and 4b)].

For intermediate drift rates @BN<8), when the chain
conformation starts to differ significantly from its equilib-
rium form [Figs. 4a) and 4b)], we observe a weaker than
linear dependence &fy on B. At even higher external fields
(BN>8) V\(B) goes through a maximum at a critical value
B. of the field, calculated by means of a third-power poly- ! o T ‘
nomial interpolation of the datalashed lines in Figs.(8)— 00 02 e 10 12
9(c)], and then gradually decreases, as has been found earli
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o
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o
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=10t

©
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\'

by Pandey[18,19. 9 N *

Below we try to analyze this behavior in more detail. / @"jg;::g;‘:gs (©
First, it is clearly seefiFigs. 9a)—9(c)] that the critical bias 08 | ki Zg,.,fg-igs
B., at which the velocity starts to decrease, does not or verye ' +Cor=0.50
slightly depends on the obstacle concentratly. It turns X, M da
out thatB, is reciprocal to the chain lengti and one can § o ! ’
readily show that for all chain lengths studied in this work = !
(N=8,16,32),NB.=const: 8 R

A i
B.N=f.~9. am 3 e e

Consequently, when thetal force, acting upon the whole __»:f & \:‘;m\ .

driven molecule, exceeds a certain well-defined value, which i T

does not depend on the size of the molecule, the mobility of 00 0.2 04 Biss 0.6 038 1.0
the polymer starts to decrease.

One could assume that this characteristic behavior of the
chain mobility as a function of the bias is reflected by the
typical relaxation times of the driven chain too. In Fig. 10 the
variation of the relaxation time, from Eq. (11), reflecting
the mobility of an inner monomer relative to the center of
mass of the molecule, is presented for a dilute system as
function of B. Note that while forB<B_. 7, is nearly con-
stant(or rises very slowly, for B=B, it starts to rise dra-
matically. This effect is rapidly enhanced with growing
length N of the chains. Thus at and abo®. the inner force field. At small drift rates, when the deformation of the
monomers of the molecule need an extremely long time untithain is negligible, the Einstein equatioh5), determining
they start to move with the total chain as a whole, and this ighe linear dependence ¥f(BN), Eq. (16), is valid. This is
matched by a decrease of the average chain velocity. an approximation where the effects of interaction between

In order to explain this behavior, the following model for the polymer and the obstacles are not accounted for. In fact
a dilute system is presented. Consider a very dilute system afie motion of a chain molecule through a dilute system,
obstacles among which a polymer is driven by an externaC,,<C*, of immobile obstacles can be divided into two

FIG. 9. Drift mean velocity of polymer chains of lengta) N
=8, (b) N=16, and(c) N=32 vs biasB for a series of densities
C,p, Of the host matrix. The vertical long-dashed line on each of the
figures indicates the approximate value of the critical Bigfor the
iven chain lengtiN. Velocity is given in unit length per MCS. The
raight lines drawn through the origin of the coordinate system
present the linear approximation of the velocity as given by
Eq. (16) in the text.
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FIG. 10. Log-normal plot of relaxation time,, Eq. (9) vs bias
for three different chain lengthgiven as a parameteand a series

of densitiesC,, of the host matrix.

parts: (i) free motion from one obstacle to another, diigl
interaction of the molecule with the next obstacle. We can

express this analytically in the following way:

where ¢ is the average distance between the obstathes
mean free path of the driven chajn is the time needed for
the polymer to travel this distance, which is equal tto
=¢/Vy=EékgT/DBN, and~ is the time needed for the poly-
mer to circumvent the obstacleapture timg At drift rates
below the critical bias, one can assume thatoes not de-
pend onB (see Fig. 1Dand by inserting into Eq.(18) one

can get the next approximatidry for the velocity

¢DoBN

(18

(19

Vi=——r—r—.
17 tDoBN+ &k, T
2.0
v o ZBND
""TBND+ T
% V,=BND /T / /
T / £ =14
x
=1200
7 / R
O / N g=l0
E 1.0t / N\
B \
A / \\
>
v 74
v / \:
V. —_ EBND
2" (1, ExpBN/T))BND + T¢
0_0 ) 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Bias

FIG. 11. Drift mean velocity, given in unit length per MCS, of
chains of lengthN=16 at small obstacle concentratioB,,
=0.125 vs. biasB fitted with the expression¥y(BN), V,(BN),

andV,(BN).

In Fig. 11 we have plotted the measured values of the
average velocity of polymer chains witN=16, drifting
through a dilute medium of obstacleS,,=0.125, and we
have approximated the data first with Ed.6), which de-
scribes well the slow drift region and then Eg9) is applied
with fitted parameterg and 7. It is seen that for reasonable
values of ¢ and 7 we obtain a good agreement with the
measured data nearly up to the characteristic maximum. The
obtained fitted value for is of the order of the relaxation
time 7, defined and measured as in our previous wWatkas

91(71) =(R3). (20)

This is the time needed for an inner monomer to travel a
distance equal to the gyration radius of the polymer when no
bias is applied. Note that for the present system, the size of
the driven polymer is of the size of the frozen polymers, so
that in this particular case; is approximately the time
needed for the middle parts of the chain to bypass the ob-
stacle in the course of their Brownian motion. For other sys-
tems we must add a prefactor 19, which will not change
the type of the relation in principle.

Because Eq(19) provides no maximum, it cannot explain
the slowing down of the chain at higher drift rates.

A maximum naturally appears, however, if one considers
the process in which a driven chain overcomes some fixed
obstacle as a thermally activated transition of the chain from
a “bound” state into a state of fre@rift) motion. The typi-
cal time required for such a process is then expected to be
T 7oeXP@AF/kgT) whereAF is the free energy difference of
both statesAF is expected to be determined by the work
needed to transform the conformation of a freely drifting
chain into a stretched conformation of a chain hooked at an
obstacle, that is, by the total forég,=BN acting over some
finite displacement of the monomeus,

Ve £DBN
2 [7oexp(aBN/kgT)]DoBN+ £kgT’

(21)

where 7y and a are parameter&Fig. 11).

Another possibility is to insert for in Eq. (19) the esti-
mated values for, multiplied by a fitted prefactor, because
the factor 1/3 in the definition of, in Eq. (11) has been
arbitrarily chosen. However, due to the extremely steep rise
of 7, at above critical fieldB;, where its measurement is
very difficult and inaccurate, we prefer here to use an ap-
proximation in the form of Eq(21).

An explanation for the rapid increase of the capture time
7 can be given by the following illustrative model. At weak
external fields, when the force, acting upon a driven mol-
ecule, is below the critical valugeqg. (17)], the interaction
with an immobile obstaclgwhich is a frozen polymer
should resemble an elastic collision of hard spheres. The
driven chain does not penetrate into the inner space of the
frozen chain, sa is small. When the external field increases
and the total force acting on the polymer reaches the critical
value f., the incident polymer chain has enough power to
overcome the entropic barrier and hook on the frozen chain.
The two chains may entangle themselves and it becomes
much more difficult for the driven one to get free again, so
that 7 rises.
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Although the present model considers very dilute systems  1¢™ ‘ ‘ ; o
it happens that the fit, based on Eg1), works well even at 50,063 fong. .
intermediate obstacle densitiagp to C=0.5), if instead of - Bo0.00 rans. L asim
the diffusion coefficienD,, we use an effective one, calcu- 0F | jBoimtans L L ‘
lated from the slope of th&y(BN) curve[Eg. (16)] at weak 4 B=0.250 trans. oo
fields, which is slightly higher tha,. Of course, at very @ * Bo0.475 ane. ]
weak bias this slope should attain the valueDgf but our £ -yt
measurements for denser systems show that there is a sligl"%> 107 R .
increase in the mobility with growing bias. At this stage we & L %g ggég%\- ; ] *
do not study this in detail because in a dense system theoe T f;&gugf@ 82833
interaction of the driven molecule with the host matrix is 10 | ) 3;3;;% I
much more complex and we have to allow for a crossover of T TN 4 ean,
the chain dynamics to a reptational one, which is beyond the T .
scope of the present study. 10° ‘ ‘ ‘ o

We should point out also that the entanglement of the 10° 10° 10° 10° 10° 107
driven polymer chains with the obstacles cannot explain the Time [MCS]

xperimentall rv imilar eff f non-Newtonian in-
experimentally observed similar effect of no ewtonia FIG. 12. Log-log plot of longitudinal and transversal effective

crease of the friction factor of a polymer flow through diffusivity D¢ vs time for several values of the bi& The solid

!oosely packed glas_s bealls 11]. T.hls IS mterpr_etgd as be- {ine indicates the diffusion when no bias is applied. Héte
ing due to the shearing stress, which appears inside an elast

molecule, driven close to a hard surfd&j. This shearing 732,Ca=0.25, andBe~0.27.
stress in combination with the extensional stress, which aps
pears at curved surfaces, leads to stretching of the molecul
thus increasing its contact area and, consequently, the drzg
on the surface. A detailed study of this mechanism is carrie
out by Chilcott and Rallisof13], who performed numerical
calculations of a flow of a dilute polymer solution, modeled

as a suspension of FENE dumbbells, passing cylindrical angg e mainly due to the transversal diffusivity, and when it

spherical surfaces at low Reynolds number. In our case, ascﬂops down the chain can hardly go around the obstacles,

matter of fact,r, accounts to some extent for this stretchingwhich leads to rapid decrease of its drift speed. The sharp

deformation as far as it is linked to the gyration radius of thelncrease of the longitudinal component means also that the

driven polymer, so that probably both effects are simulta-ongemple of polymer chains spreads rapidly in the direction

neously present in our model and contribute to the observegs yhe qrift because some chains are locked for a long time
behavior. by an obstacle and do not follow the flow while others drift
with a great speed until they are hooked again by the host
VI. EFFECTIVE DIFFUSIVITY OF A CHAIN matrix. L _
DRIVEN THROUGH A POROUS MEDIUM The perIOd of initial decline of both Components of the
effective diffusivity indicates the time scales at which the

It appears interesting, following the work of Saffmi@¥]  external field is practically not felt, and the Brownian motion
on the flow of a dynamically neutral material through a po-is predominant. It is normal to expect that the length of this
rous medium, to study the effective mean square displaceperiod decreases with increase of the bias.
ment of the center of mass of a driven chain in a moving
cqordinate system, fixed at the total mass center of all the VII. DISCUSSION
driven polymergEq. (7)], and to calculate by Eq10) the
longitudinal and transversal components of the diffusion co- In the present investigation we examine the variation of
efficient with respect to the direction of drift. static and dynamic properties of isolated polymer chains

In the trivial case when no bias is applied, the drift is zero,driven by a bias field through a quenched environment of
with only Brownian motion of the chains, and in the new randomly distributed obstacle@olymer chains Both the
coordinate system one will observe the same displacementkift rate and the density of the medium are varied. Our
as in the conventional absolute coordinate system, so that tHimdings agree well with theoretical predictiofi,13-19
effective diffusivity should be the same as the usual diffusiorand experimental resul{8,6,10,11 on the elongation of the
in a system without external fields. In Fig. 12 we demon-polymer conformations in a flow through porous media. Our
strate the behavior of the longitudinal and transversal comresults indicate that the most probable shape of a chain in
ponents ofD.x(t) =gs . m(t)/t for chains of lengtiN=32  such a drift is a hooflike one with both ends pointing in the
in a porous medium wittC,=0.25 at different bias fields direction of the drift, as suggested by the observed decrease
B=0.063-0.625. It is evident that at weak fields the twoat high drift rates of the rati«ﬁRQ/(Ré) below its equilib-
components of the effective diffusivity tend to merge into arium value of 6.
single curve close to the curve of the static diffusion without We confirm earlier results both by experim¢&t11] and
bias. The bias affects the longitudinal componentDgf;, by computer simulationgl8,19 of a non-Newtonian flow of
which after an initial decline rapidly grows with time until the polymer liquid, expressed in an anomalously sharp de-
saturation is reached, while the transversal component isrease of the mobility when the bias exceeds some threshold

enerally diminished. The gap between both components
pidly opens as the applied biBsexceedsB.~0.27 (note

e log-log scale of the grajph

This fact reveals in a more direct way the mechanism of
reduced mobility of a chain &>B.. The obstacles, which
driven chain meets in its drift along the bias, are circum-
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value. On the grounds of a specific relaxation time, reprethe driven chains in a moving coordinate system where the
senting the inner mobility of the driven chain, we suggest adrift motion is eliminated and only Brownian motion still
simple phenomenological model that fits well to our data orpersists. The observed strong decrease of the transversal
the dynamics of the chains. Basically the model assumes thabmponent of the diffusivity at growing obstacle density
at low drift rates the interaction of a polymer with an ob- makes bypassing of the obstacles extremely slow and thus
stacle is like an elastic collision of hard spheres, while atdecreases its overall drift velocity.
supercritical drift rates the force acting on the driven mol-
ecule is high enough to overcome the entropic barrier and
press it to the frozen obstacles, which leads to a sharp in-
crease of the capture time. This project was supported by EU Grant Copernicus, No.
The model is elucidated by the analysis of the longitudi-CIPA-CT93-0105 and by the Bulgarian National Science
nal and transversal components of the effective diffusivity ofFoundation X-644/1997.
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