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Polymer chain in a flow through a porous medium: A Monte Carlo simulation

V. Yamakov* and A. Milchev
Institute for Physical Chemistry, Bulgarian Academy of Sciences, Georgi Bonchev Street, Block 11, 1113 Sofia, Bulgaria

~Received 19 February 1997; revised manuscript received 5 August 1997!

We study conformational and dynamic properties of dilute polymer solutions drifting through a random
environment of obstacles at varying intensity of the external fieldB and of the host matrix densityCob using
dynamic Monte Carlo simulation of an off-lattice bead-spring model. The presence of obstacles is found to
influence strongly the conformational properties of the drifting chains: with growing strength of the fieldB and
Cob50 the chain mean size~gyration radius!, Rg

2 , rapidly increases while the ratio between the end-to-end
distance,Ree

2 , andRg
2 drops essentially below the usual value of 6, typical in the absence of drift, suggesting

a hooflike shape of the chain with both ends directed along the external field vector. We confirm the finding of
G. M. Foo and R. B. Pandey@Phys. Rev. E51, 5738~1995!# of a critical strength of the external fieldBc above
which the permeability of the host matrix sharply drops. A detailed study of this phenomenon suggests thatBc

may be related to a dramatic growth of a specific ‘‘capture’’ time, characterizing the interaction of the chains
with the obstacles, so that a simple model describing the drift of chains among obstacles may be shown to
reproduce our findings.@S1063-651X~97!10912-6#

PACS number~s!: 36.20.2r, 82.45.1z, 87.15.2v
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I. INTRODUCTION

In a previous publication,@1# a scaling analysis of chain
conformations, diffusivity, and characteristic relaxati
times of a polymer in a porous medium was suggested
order to interpret the influence of a random environment
the static and dynamic properties of the macromolecule
natural extension of these investigations would be the st
of the drift of a polymer chain through a porous mediu
caused by external field~bias!. This problem is closely re-
lated to ion and mass transport in complex polymer mixtur
molecular permeation in gels~electrophoresis!, sedimenta-
tion studies, marine geosciences, water flooding in secon
oil recovery, etc., and has been the subject of consider
interest in recent years@2#; it has been addressed by expe
mental @3–12#, theoretical @2,13–15#, and simulational
@13,16–19# studies on this subject.

The non-Newtonian behavior of a polymer solutio
@20,21# is an essential property to investigate. Experimen
measurements@3,11# reveal that above a certain velocity
very dilute polymer solution, driven through cavities
packed beads, shows a non-Newtonian behavior manife
by an anomalous increase of the friction factorf of the me-
dium with increasing flow velocity. This, observed also
Vissmann and Bewersdorff@10#, is interpreted as being du
to an interaction between extension and shear deformat
and may be attributed to the dominance of extension st
@3#.

Theoretical observations based on dumbbell models,
by either a ‘‘linear’’ one with a Hookean spring connect
force between the two beads, or by a nonlinear FENE~fi-
nitely extendable nonlinear elastic! connecting potential,
show@2,15# stretching of the polymers during flow in porou

*Present address: Max-Planck-Institut fur Polymerforschu
Ackermannweg 10, D55021 Mainz, Germany. Electronic addr
yamakov@ipchp.ipc.acad.bg
561063-651X/97/56~6!/7043~10!/$10.00
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media. The Hookean spring model in a strong flow and de
environment even predicts a catastrophic situation of per
nent growth of the gyration radius to infinity. The numeric
calculations performed by Chilcott and Rallison@13# for a
suspension of FENE dumbbells, passing cylindrical a
spherical surfaces, revealed that the nonlinear part of
FENE potential limits the growth of the dumbbell link to
large fraction of its maximum extensibility. Several mode
for the stretching conformations of polymers in extensio
flows based on experimental@6,7# and theoretical@16,17,22#
studies are known in the literature.

In order to overcome experimental difficulties as well
avoid severe approximations in the analytical treatme
computer simulations could appear to be especially suite
a means to get more insight into the complexity of the pro
lem. An attempt@18,19# to simulate polymers driven throug
a porous medium in two dimensions, using a reptatio
Monte Carlo technique, confirmed the expected growth
the gyration radius with increasing drift rate. However, the
studies reported a decrease of the growth with increas
density of the porous medium@19#, contrary to the expected
theoretical predictions, cited above. These simulations of
permeability of the media in dependence of the drift ra
confirmed also the experimentally observed@3,11# decrease
of the permeability above some critical flow rate, charact
istic for the system, albeit no interpretation of these resu
has been suggested. Given that the applicability of rep
tional algorithms to nonequilibrium studies of polymers
questionable in principle, it was clear that more studies
needed so that a comprehensive understanding of the p
erties of polymer drift through porous media is achieved.

In this paper we report simulation results, based on
off-lattice bead-spring model of a polymer chain@23#, placed
in a three-dimensional random medium of obstacles, stud
by a dynamic Monte Carlo simulation technique. The mo
has been used before in a number of studies of poly
solutions in the bulk@24#, at interfaces@25#, in constrained
geometries@26#, etc., and is known to reproduce faithfull

,
s:
7043 © 1997 The American Physical Society
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7044 56V. YAMAKOV AND A. MILCHEV
the static properties and the Rouse dynamics of long ma
molecules with excluded volume interactions. Although t
model does not consider hydrodynamic interactions betw
molecules or the inhomogeneity of the flow of the solve
around the introduced obstacles, as done in some theore
studies@17,22#, it reproduces chain conformations, similar
those predicted by these works.

As in our previous paper@1#, in the present investigation
we use as a host matrix an equilibrated dense solution
identical polymer chains that is frozen at different concen
tions Cob. We then let a single chain~or a small number of
noninteracting chains!, driven by an external~bias! field B,
move through these realizations of the random media.
simulational procedure is briefly explained in Sec. II. A br
analysis of the measured quantities at the long-time regim
made in Sec. III. The conformational properties of a driv
chain through a random medium are then presented and
cussed in Sec. IV where they are shown to agree well w
the quoted theoretical and experimental observations. In
V we focus on the mobility of the chain at different dri
rates, demonstrating its non-Newtonian behavior at high d
velocity. We also suggest a simple phenomenological in
pretation of our findings. Results for the longitudinal a
lateral components of the effective diffusivity, as introduc
by Saffman@27# for a flow of a dynamically neutral materia
through a porous medium, are then presented in Sec. VI.
conclude our report in Sec. VII with a brief summary of o
observations and conclusions.

II. THE MODEL

In our off-lattice bead-spring model of a polymer cha
@23,1#, placed in a random medium of obstacles, one de
with N ‘‘effective monomers,’’ connected by springs, repr
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senting ‘‘effective bonds,’’ using a FENE potential:

UFENE~r !

5H 2
k

2
R2lnF12S r 2 l 0

R D 2G , for l 02R,r , l 01R,

`, otherwise,
~1!

where r is the distance between two successive beadsl 0
50.7 is the unperturbed bond length,R5 l max2 l 050.3, and
k/2520 ~in our units of energykBT51.0) is the elastic con-
stant of the FENE potential, which behaves as a harmo
potential for r 2 l 0!R, that is, UFENE(r' l 0)'2(k/2)(r
2 l 0)2 but diverges logarithmically for bothr→ l max and
r→ l min52l 02 l max. We choose our unit of length such th
l max51 and thenl min50.4.

The nonbonded interaction is described by a Morse po
tial,

UM~r !5eM$exp@22a~r 2r min!#22exp@2a~r 2r min!#%

for 0,r ,`, ~2!

where r min50.8, eM51, and the large value ofa524
makes interactions vanish at distances larger than unity
that an efficientlink-cell algorithm@23# for short-range inter-
actions can be implemented.

The radius of the beads and the interactions, Eqs.~1!, ~2!,
have been chosen such that the chains may not inter
themselves or each other in the course of their movem
within the box.

A standard Metropolis algorithm is used, whereby an
tempted move of a randomly selected particle in a rand
directionDx,Dy,Dz is accepted with probability, equal to
P5H exp@2~Enew2BDx2Eold!/kBT# for Enew2BDx.Eold ,

1, otherwise,
~3!
ce-

r of
s

where Enew and Eold are the energies of the new and o
system configurations. The external field, or bias,B, is intro-
duced in the system as an additional term in the Boltzm
probability in Eq.~3! whereDx denotes the attempted mov
distance in thex direction, which is the direction of the bia
field too.

The porous medium is the same as in our previous pa
@1#. It consists of an initially relaxed and then frozen netwo
of polymer chains of lengthN516, and the monomers hav
the same size as those of the diffusing chain. The concen
tion of the networkCob is varied and the behavior of diffus
ing chains of various lengthN at various drift ratesB is
studied in the good solvent regime,kBT51.0, since from
previous studies of the model it is known that theu tempera-
ture kBTu50.62 @24#.

The static properties of the chains are studied by mea
ing their mean square radius of gyrationRg

2,
n

er

ra-

r-

Rg
25

1

N(
n51

N

^~r n2r c.m.!
2&, ~4!

where

r c.m.5
1

N(
n51

N

r n ~5!

and r n is the radius vector of thenth bead of the chain.
In addition to the conventional mean square displa

ments of the middle monomersg1 ,g2, in an absolute- and in
a center-of-mass coordinate system, and of the cente
gravity of the chains,g3, used in previous investigation
@23,1#,
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56 7045POLYMER CHAIN IN A FLOW THROUGH A POROUS . . .
g1~ t !5^@r N/2~ t !2r N/2~0!#2&,

g2~ t !5^$@r N/2~ t !2r c.m.~ t !#2@r N/2~0!2r c.m.~0!#%2&,

g3~ t !5^@r c.m.~ t !2r c.m.~0!#2&, ~6!

we define here several mean square displacements, rel
to the total center of mass of the polymer fluid,Rc.m.,

g1_c.m.~ t !5^$@r N/2~ t !2Rc.m.~ t !#2@r N/2~0!2Rc.m.~0!#%2&,

g3_c.m.~ t !5^$@r c.m.~ t !2Rc.m.~ t !#2@r c.m.~0!2Rc.m.~0!#%2&,
~7!

consisting of many noninteracting~interpenetrable! chains
~each driven polymer in the system does not ‘‘feel’’ the oth
driven polymers and can penetrate through them!. In the
presence of an external field the chain drifts through the
dium and the mean square displacement of its center of m
is a quadratic function of time@measured in Monte Carlo
steps~MCS! per monomer~bead!, whereby 1 MCS is the
time needed for all monomers to perform an attempted m
Dx,Dy,Dz<60.5 in a random direction#. Thusg3(t) from
Eq. ~6! yields the average velocity of a chain:

VN
2 5 lim

t→`

@g3~ t !/t2#. ~8!

In the long-time limitVN must coincide with the averag
velocity of the total mass center of the fluid, defined as

Vc.m.
2 5 lim

t→`

@Rc.m.
2 ~ t !/t2#. ~9!

The difference betweenVN andVc.m. may serve as a con
trol parameter for the statistics of our measurements.

Similarly to the case of a system without bias, a definiti
for the so-calledeffective diffusivity@27# can be introduced
using the ratio of the relative mean-square displacemen
the center of gravity of a single chaing3_c.m.(t) with respect
to time t:

6Deff5 lim
t→`

@g3_c.m.~ t !/t#. ~10!

With the various types of displacements, introduc
above, a number of characteristic relaxation times,t1_c.m.,
t2, t3_c.m., can be defined:

g1_c.m.~t1_c.m.!5^Rg
2&, g2~t2!5 1

3 ^Rg
2&,

g3_c.m.~t3_c.m.!5g2~t3_c.m.!. ~11!

The index _c.m. of t1_c.m. andt3_c.m. stands for the fact tha
they are calculated in a moving coordinate system conne
with Rc.m., at variance with their conventional definitio
@28,1#. The definition oft2 is also slightly modified by using
a different prefactor 1/3 instead of 2/3@28,1# because of the
non-Gaussian elongated conformation of the chains i
flow. This does not change the principal behavior oft2 but
only decreases its time scale so that better statistics ca
used in its determination.

The simulations have been performed in a volume of3

effective cells of size 1 using periodic boundary conditio
ive
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and in the highest concentration regime they contain up
24 576 fixed monomers in 1536 chains of lengthN516 that
form the porous media. The diffusing chains, immersed i
this host matrix, have been chosen with lengths of 8, 16,
32 monomers. The intensity of the external fieldB is varied
from 0.0625 to 1.5 relative units~in our caseenergyin kBT
per distancein unit lengths!. To obtain better statistics we
performed three independent measurements for each ran
media, changing the direction of the field along thex, y,
andz axes, and then averaged the results.

III. LONG-TIME REGIME

All our results and analysis presented in this paper c
cern the long-time behavior of the chains drifting through t
porous medium in a sense that all measured quantities h
already reached their long-time asymptotic limits. To rea
and explore these limits for each system we used four
quential runs of 107 MCS each~the final configuration of a
given run becomes a starting configuration for the next o!
and the measurements were performed at every 103 MCS
starting from the second run after the system has been eq
brated for 107 MCS.

In Fig. 1 one can verify that the mean-square displa
ments of the longest chains (N532) studied,g1 , g3, and
Rc.m.

2 coincide well at times 106–107 MCS for all densities of
the host matrix atB,Bc'0.25 ~see below!. Note that the
value of these displacements goes up to 105–107 square cell
units, which, compared to chain sizeRg

256.3 ~Fig. 8!, means
that the polymers have traveled a distance of (1022103)Rg
during the MC simulations and the long-time regime of dr
has been successfully reached. As long as the travel dist
is between 10 and 102 box sizes, the data might be influ
enced by certain finite-size effects. Such effects are diffic
to estimate in our model since their high computational e
ciency is based on bitwise operations so that most quanti
such as the box size and the chain length, must be multi
of two. Thus the next box size of 643 cubic cells would

FIG. 1. Mean square displacements of the central beadg1, cen-
ter of massg3 of a polymer chain, and the center of mass of t
whole polymer fluidRc.m.

2 vs time for N532 andB50.25 for a
series of densitiesCob of the host matrix.
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7046 56V. YAMAKOV AND A. MILCHEV
accommodate 8 times more particles at the same densi
the medium and would exceed the operational memory
modern RISC Work station computer. We have tried the
fore to allow for such finite-size effects by changing the h
matrix and the direction of the bias field during simulation

The long-time steady state variation of conformation
quantities such as the radius of gyration is demonstrate

FIG. 2. Instantaneous values of the mean-square gyration ra
at different times during a simulational run. The measured val
are averages over 16 chains ofN516 at three sequential runs of 107

MCS. The measurements were performed after an initial perio
107 MCS has elapsed. The straight horizontal lines mark the a
age values of all the measurements, performed periodically e
103 MCS ~not all of them are shown on the figure!.
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Fig. 2 for one of the highest obstacle concentrationsCob
50.625 in a very long time interval. Even at the strong
field, B51.0, we do not detect any systematic drift of th
instantaneous values ofRg

2 with time. The straight lines mark
the average values of all the measurements every 103 MCS
~not all are shown on the figure!. The data at a very weak
biasB50.0625 are given for comparison.

The length of the time intervals of 107 MCS, used in the
simulation, can be assessed by studying the time correla
between system configurations, for instance, of the end
end chain distance, defined as

ius
s

of
r-
ry

FIG. 3. Correlation functions of the end-to-end chain distan
for the systems from Fig. 2.
Rcorr~ t i !5

@1/~N2 i !#~1/P! (
j 51

N2 i

(
a51

P

~Rj a2^R&!~Rj 1 i ,a2^R&!

~1/N!~1/P!(
j 51

N

(
a51

P

~Rj a2^R&!2

, ~12!
lib-

ia

the

s

whereRj a is the end-to-end distance of thea chain, mea-
sured at timet j ,

Rj a5A@r N~ t j ,a!2r 1~ t j ,a!#2 ~13!

and^R& is its mean value, averaged over all measurementN
and number chainsP.

The results for the systems shown in Fig. 2 are presen
in Fig. 3. For the cases ofB,Bc ~for N516 Bc'0.5 as will
be shown below! the configurations after timest.105 do not
correlate practically. ForB.Bc , however, the time neede
to reach a new uncorrelated configuration rises expon
tially, and for B51.0 even 107 MCS are not enough to ob
tain a completely independent configuration.

Thus one may claim that forB,Bc we have reached th
long-time steady-state regime for all of the data presen
below. Our analysis concerns mainly this regime, althou
we give some results and a possible interpretation of
ed

n-

d
h
e

behavior of the chains even beyondB'Bc , assuming that
the measured quantities are not very far from their equi
rium values, as can be seen from Figs. 1 and 2.

IV. CONFORMATIONAL PROPERTIES OF A CHAIN
DRIVEN THROUGH POROUS MEDIA

In a three-dimensional~3D! plot in Fig. 4~a! we show the
variation of ^Rg

2& of a driven chain through porous med
with increasing external fieldB at different densitiesCob of
the medium. While in the absence of obstacles,Cob50, no
dependence of the gyration radius on the fieldB is observed,
as it should be, even a slight inclusion,Cob50.125, of fixed
particles in the system leads to a significant increase of
size of the chains at higher drift rates (B.0.5). The ratio
between longitudinal̂ Rgl

2 & and transversal̂ Rgt
2 & compo-

nents, plotted in Fig. 4~b!, indicates that this increase i
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56 7047POLYMER CHAIN IN A FLOW THROUGH A POROUS . . .
mainly due to stretching of the polymer along the drift direc
tion. If such a stretching is assumed, one must then expec
increase of the ratiôRee

2 &/^Rg
2&, where ^Ree

2 & is the mean
square end-to-end distance, in comparison with that of
chain in free space. For a Gaussian coil its theoretical va
is 6, while for a stretched linear string it is 12. However, i
Fig. 5 one can clearly see that after a slight increase of up
6.4, a decrease of^Ree

2 &/^Rg
2& with increasingB takes place,

the ratio going down to values even below 5 at intermedia
matrix densityCob50.25–0.50. This effect is weakened a
high obstacle concentrationsCob50.75 because at these den
sities the conformation of the diffusing chain is governe
strongly by the configuration of the pores in the medium@1#.
A simple explanation of this decreasing ratio is to assume
hooflike form of the chain with ends directed along the dri
~Fig. 6!, so that the two end beads get closer to one anot
as they are more mobile than the inner beads, the latter be
frequently hooked in the presence of obstacles. This is o
served even for a chain driven in free space, as one c
notice in Fig. 5 forCob50. Of course, one can attribute this
to finite-size effects and can expect that in the limit of infi
nitely long chains this decline of̂Ree

2 &/^Rg
2& should not be

observed. Because we were forced to limit our simulations
chain lengths of 32 beads, however, we were not able

FIG. 4. ~a! Mean-square gyration radiusRg
2 measured in the way

presented in Fig. 2 and~b! the ratio of its longitudinal and transver-
sal componentŝRgl

2 &/^Rgt
2 & vs bias for a series of densitiesCob of

the host matrix.
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check this during the present study.
It is interesting to note that the typical conformations

the chains, usually observed in our simulations~Fig. 6!, are
similar to those reported for polymers in extensional flo
@6,7,16,17,22#, in spite of the fact that we do not conside
any inhomogeneity of the flow of the solvent, modeled
the biased field (B5const everywhere in the system! in be-
tween the obstacles. This unexpected similarity may be
to the fact that the acceptance rate in the simulations is
ferent away from an obstacle and close to it—in a space

FIG. 5. The ratio between the end-to-end mean-square dist
and the mean-square gyration radius^Ree

2 &/^Rg
2& vs bias for series

of densitiesCob of the host matrix.

FIG. 6. A snapshot of a typical hooflike form of a driven 3
beads chain~light beads! at overcritical biasB50.625 through a
dilute medium of obstacles~dark beads! of densityCob50.125. The
direction of the drift is indicated by the arrow.
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7048 56V. YAMAKOV AND A. MILCHEV
of obstacles the acceptance rate can be 10 or more t
larger than that in a dense system. This introduces a kin
inhomogeneity in the dynamics of the system, similar to t
caused by extensional flow. An original kink model for u
raveling of a polymer chain in a strong extensional flow
presented by Larson@17#. He states that the increasing of th
extensional flow decreases the number of kinks along
chain, thus straightening it along the flow. An earlier the
retical analysis, done by Ryskin@22#, who refers to the ex-
perimental results of James and Saringer@6#, reveals that
such unraveling starts at the middle and spreads throug
the ends of the chain, thus forming a ‘‘coil-string-coil’’ pic
ture. Ryskin argues that this model is favored by the w
known experimental fact@29# that the chain scission in shea
degradation occurs almost precisely at the midpoint of
chain. The typical chain conformation that we observe
high bias is a good example of the ‘‘coil-string-coil’’ mode
In Fig. 6 one can notice that the driven polymer is mo
coiled at the ends as compared to the middle part, where
completely stretched.

The predicted elongation of the average square b
length^ l 2&, based on a dumbbell model with FENE potent
between the beads@2,13,15#, is also confirmed in our simu
lations as seen from Fig. 7. Again we should point out t
extensions of the bonds occur for sufficiently strong fiel
B, and predominantly in the intermediate range of obsta
densities.

At this point it should also be noted that our results for t
conformation of a driven chain disagree with the earlier fin
ings of Foo and Pandey@19#, as has been already mention
in the Introduction. The main difference is in the behavior
the observed rate of conformational elongation of the driv
chain with increasing of the obstacle concentration. Wh
our results~in agreement with the cited theoretical analys!
show a definite increase of the elongation with increasing
media density@Fig. 4~a!# and no change of̂Rg

2& with B in
the absence of obstacles, the results of Foo and Pandey@19#
show maximal elongation of the driven chain in the fr
space, which then rapidly decreases with increasing the
stacle density. Our analysis of this point shows that the
havior observed by Foo and Pandey@19# is an artifact of the

FIG. 7. Average square bond length^ l 2&, measured in square
cell unit length, vs biasB for a series of densitiesCob of the host
matrix.
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reptational algorithm, which they use in their study. In
reptational algorithm one moves the two end beads of
chain only, which are thus more mobile and, in the prese
of a bias field, stretch their bonds much more than the in
beads do. In the process of reptation the end monomers
come inner monomers and these elongated bonds bec
bonds inside the chain. Thus after a short time (}N2) all the
bonds of the chain will be abnormally elongated, which w
affect the size of the coil as a whole. We performed a t
applying reptational algorithm in comparison to the conve
tional one whereall the monomers are moved in a rando
manner. Our results for̂Rg

2& with the reptational algorithm
reproduce those reported by Foo and Pandey@19#. In Fig. 8
we plot the^Rg

2& vs B relationship in free space~as there the
difference is most obvious!. Evidently, while the conven-
tional algorithm produces no dependence of the chain size
B within the range of statistical errors, the reptational alg
rithm shows a systematic increase of the chain size with
biasB.

Thus our conclusion is that the reptational algorithm
not applicable for the simulation of systems in a drift, b
cause it affects in a wrong way not only the dynamic, b
also thestatic properties of the driven macromolecules,
contrast to the case of equilibrium polymer systems, wh
the reptational algorithm does not affect the static propert

V. MOBILITY OF A POLYMER CHAIN
DRIVEN THROUGH A POROUS MEDIUM

In the case of a slow drift through a dilute porous m
dium, when the conformation of the driven chain is not a
fected essentially by the drift, the average velocity of t
molecule is a linear function of the mobilitym of the chain
and the total external forcef tot acting on it@30#, which in our
case isBN:

VN5m f tot5mBN. ~14!

Applying Einstein’s formula, which linksm with the dif-
fusion coefficientDN ,

FIG. 8. Mean-square gyration radiusRg
2 calculated in the ab-

sence of obstacles by means of conventional Monte Carlo techn
~open circles! and using a reptational Monte Carlo algorithm~filled
triangles!.
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56 7049POLYMER CHAIN IN A FLOW THROUGH A POROUS . . .
DN5mkBT, ~15!

we obtain a relation for the average velocity as a function
the diffusion coefficient and the bias:

V05D0BN/kBT. ~16!

Here the index 0 atD denotes the diffusion coefficient, mea
sured when no external field is applied,B50, andV0 stands
for a ‘‘zero’’ approximation, i.e., this relation is applicab
only for slow drift in a dilute medium.

The simulation data, represented in Figs. 9~a!–9~c! con-
firm Eq. ~16! in the region of weakf tot (BN,4, for N
58,16,32) at dilute regimes. The straight lines dra
through the origin of the coordinate system in Figs. 9~a!–
9~c! indicate the exact relation in Eq.~16! with D0, having
the values ofD0 measured for the same systems without
external field@1#. A very good agreement of these lines wi
the measured data is observed for all the chain length
dilute media. Substantial discrepancies are seen only at
density of the porous medium. The regions of linearity
VN(B) correlate clearly with the regions of minor conform
tional deformations of the chain@see Figs. 4~a! and 4~b!#.

For intermediate drift rates (4,BN,8), when the chain
conformation starts to differ significantly from its equilib
rium form @Figs. 4~a! and 4~b!#, we observe a weaker tha
linear dependence ofVN on B. At even higher external fields
(BN.8) VN(B) goes through a maximum at a critical valu
Bc of the field, calculated by means of a third-power po
nomial interpolation of the data@dashed lines in Figs. 9~a!–
9~c!#, and then gradually decreases, as has been found e
by Pandey@18,19#.

Below we try to analyze this behavior in more deta
First, it is clearly seen@Figs. 9~a!–9~c!# that the critical bias
Bc , at which the velocity starts to decrease, does not or v
slightly depends on the obstacle concentrationCob. It turns
out thatBc is reciprocal to the chain lengthN and one can
readily show that for all chain lengths studied in this wo
(N58,16,32),NBc5const:

BcN5 f c'9. ~17!

Consequently, when thetotal force, acting upon the whole
driven molecule, exceeds a certain well-defined value, wh
does not depend on the size of the molecule, the mobility
the polymer starts to decrease.

One could assume that this characteristic behavior of
chain mobility as a function of the bias is reflected by t
typical relaxation times of the driven chain too. In Fig. 10 t
variation of the relaxation timet2 from Eq. ~11!, reflecting
the mobility of an inner monomer relative to the center
mass of the molecule, is presented for a dilute system
function of B. Note that while forB,Bc t2 is nearly con-
stant ~or rises very slowly!, for B>Bc it starts to rise dra-
matically. This effect is rapidly enhanced with growin
length N of the chains. Thus at and aboveBc the inner
monomers of the molecule need an extremely long time u
they start to move with the total chain as a whole, and thi
matched by a decrease of the average chain velocity.

In order to explain this behavior, the following model fo
a dilute system is presented. Consider a very dilute syste
obstacles among which a polymer is driven by an exter
f
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force field. At small drift rates, when the deformation of th
chain is negligible, the Einstein equation~15!, determining
the linear dependence ofVN(BN), Eq. ~16!, is valid. This is
an approximation where the effects of interaction betwe
the polymer and the obstacles are not accounted for. In
the motion of a chain molecule through a dilute syste
Cob!C* , of immobile obstacles can be divided into tw

FIG. 9. Drift mean velocity of polymer chains of length~a! N
58, ~b! N516, and~c! N532 vs biasB for a series of densities
Cob of the host matrix. The vertical long-dashed line on each of
figures indicates the approximate value of the critical biasBc for the
given chain lengthN. Velocity is given in unit length per MCS. The
straight lines drawn through the origin of the coordinate syst
present the linear approximation of the velocity as given
Eq. ~16! in the text.
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parts:~i! free motion from one obstacle to another, and~ii !
interaction of the molecule with the next obstacle. We c
express this analytically in the following way:

VN5
j

t1t
, ~18!

wherej is the average distance between the obstacles~the
mean free path of the driven chain!, t is the time needed fo
the polymer to travel this distance, which is equal tot
5j/V05jkBT/D0BN, andt is the time needed for the poly
mer to circumvent the obstacle~capture time!. At drift rates
below the critical bias, one can assume thatt does not de-
pend onB ~see Fig. 10! and by insertingt into Eq. ~18! one
can get the next approximationV1 for the velocity

V15
jD0BN

tD0BN1jkbT
. ~19!

FIG. 10. Log-normal plot of relaxation timet2, Eq. ~9! vs bias
for three different chain lengths~given as a parameter! and a series
of densitiesCob of the host matrix.

FIG. 11. Drift mean velocity, given in unit length per MCS, o
chains of length N516 at small obstacle concentrationCob

50.125 vs. biasB fitted with the expressionsV0(BN), V1(BN),
andV2(BN).
n

In Fig. 11 we have plotted the measured values of
average velocity of polymer chains withN516, drifting
through a dilute medium of obstacles,Cob50.125, and we
have approximated the data first with Eq.~16!, which de-
scribes well the slow drift region and then Eq.~19! is applied
with fitted parametersj andt. It is seen that for reasonabl
values of j and t we obtain a good agreement with th
measured data nearly up to the characteristic maximum.
obtained fitted value fort is of the order of the relaxation
time t1, defined and measured as in our previous work@1# as

g1~t1!5^Rg
2&. ~20!

This is the time needed for an inner monomer to trave
distance equal to the gyration radius of the polymer when
bias is applied. Note that for the present system, the siz
the driven polymer is of the size of the frozen polymers,
that in this particular caset1 is approximately the time
needed for the middle parts of the chain to bypass the
stacle in the course of their Brownian motion. For other s
tems we must add a prefactor tot1, which will not change
the type of the relation in principle.

Because Eq.~19! provides no maximum, it cannot explai
the slowing down of the chain at higher drift rates.

A maximum naturally appears, however, if one consid
the process in which a driven chain overcomes some fi
obstacle as a thermally activated transition of the chain fr
a ‘‘bound’’ state into a state of free~drift! motion. The typi-
cal time required for such a process is then expected to
t}t0exp(DF/kBT) whereDF is the free energy difference o
both states.DF is expected to be determined by the wo
needed to transform the conformation of a freely drifti
chain into a stretched conformation of a chain hooked at
obstacle, that is, by the total forcef tot5BN acting over some
finite displacement of the monomers,a.

V25
jD0BN

@t0exp~aBN/kBT!#D0BN1jkBT
, ~21!

wheret0 anda are parameters~Fig. 11!.
Another possibility is to insert fort in Eq. ~19! the esti-

mated values fort2 multiplied by a fitted prefactor, becaus
the factor 1/3 in the definition oft2 in Eq. ~11! has been
arbitrarily chosen. However, due to the extremely steep
of t2 at above critical fieldBc , where its measurement i
very difficult and inaccurate, we prefer here to use an
proximation in the form of Eq.~21!.

An explanation for the rapid increase of the capture ti
t can be given by the following illustrative model. At wea
external fields, when the force, acting upon a driven m
ecule, is below the critical value@Eq. ~17!#, the interaction
with an immobile obstacle~which is a frozen polymer!
should resemble an elastic collision of hard spheres.
driven chain does not penetrate into the inner space of
frozen chain, sot is small. When the external field increas
and the total force acting on the polymer reaches the crit
value f c , the incident polymer chain has enough power
overcome the entropic barrier and hook on the frozen ch
The two chains may entangle themselves and it beco
much more difficult for the driven one to get free again,
that t rises.
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Although the present model considers very dilute syste
it happens that the fit, based on Eq.~21!, works well even at
intermediate obstacle densities~up to C50.5), if instead of
the diffusion coefficientD0, we use an effective one, calcu
lated from the slope of theVN(BN) curve@Eq. ~16!# at weak
fields, which is slightly higher thanD0. Of course, at very
weak bias this slope should attain the value ofD0, but our
measurements for denser systems show that there is a s
increase in the mobility with growing bias. At this stage w
do not study this in detail because in a dense system
interaction of the driven molecule with the host matrix
much more complex and we have to allow for a crossove
the chain dynamics to a reptational one, which is beyond
scope of the present study.

We should point out also that the entanglement of
driven polymer chains with the obstacles cannot explain
experimentally observed similar effect of non-Newtonian
crease of the friction factor of a polymer flow throug
loosely packed glass beads@3,11#. This is interpreted as be
ing due to the shearing stress, which appears inside an el
molecule, driven close to a hard surface@3#. This shearing
stress in combination with the extensional stress, which
pears at curved surfaces, leads to stretching of the mole
thus increasing its contact area and, consequently, the
on the surface. A detailed study of this mechanism is car
out by Chilcott and Rallison@13#, who performed numerica
calculations of a flow of a dilute polymer solution, model
as a suspension of FENE dumbbells, passing cylindrical
spherical surfaces at low Reynolds number. In our case,
matter of fact,t2 accounts to some extent for this stretchi
deformation as far as it is linked to the gyration radius of
driven polymer, so that probably both effects are simu
neously present in our model and contribute to the obser
behavior.

VI. EFFECTIVE DIFFUSIVITY OF A CHAIN
DRIVEN THROUGH A POROUS MEDIUM

It appears interesting, following the work of Saffman@27#
on the flow of a dynamically neutral material through a p
rous medium, to study the effective mean square displa
ment of the center of mass of a driven chain in a mov
coordinate system, fixed at the total mass center of all
driven polymers@Eq. ~7!#, and to calculate by Eq.~10! the
longitudinal and transversal components of the diffusion
efficient with respect to the direction of drift.

In the trivial case when no bias is applied, the drift is ze
with only Brownian motion of the chains, and in the ne
coordinate system one will observe the same displacem
as in the conventional absolute coordinate system, so tha
effective diffusivity should be the same as the usual diffus
in a system without external fields. In Fig. 12 we demo
strate the behavior of the longitudinal and transversal co
ponents ofDeff(t)5g3_c.m.(t)/t for chains of lengthN532
in a porous medium withCob50.25 at different bias fields
B50.063–0.625. It is evident that at weak fields the tw
components of the effective diffusivity tend to merge into
single curve close to the curve of the static diffusion witho
bias. The bias affects the longitudinal component ofDeff ,
which after an initial decline rapidly grows with time unt
saturation is reached, while the transversal componen
s,
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generally diminished. The gap between both compone
rapidly opens as the applied biasB exceedsBc'0.27 ~note
the log-log scale of the graph!.

This fact reveals in a more direct way the mechanism
reduced mobility of a chain atB.Bc . The obstacles, which
a driven chain meets in its drift along the bias, are circu
vented mainly due to the transversal diffusivity, and when
drops down the chain can hardly go around the obstac
which leads to rapid decrease of its drift speed. The sh
increase of the longitudinal component means also that
ensemble of polymer chains spreads rapidly in the direc
of the drift because some chains are locked for a long t
by an obstacle and do not follow the flow while others dr
with a great speed until they are hooked again by the h
matrix.

The period of initial decline of both components of th
effective diffusivity indicates the time scales at which t
external field is practically not felt, and the Brownian motio
is predominant. It is normal to expect that the length of t
period decreases with increase of the bias.

VII. DISCUSSION

In the present investigation we examine the variation
static and dynamic properties of isolated polymer cha
driven by a bias field through a quenched environment
randomly distributed obstacles~polymer chains!. Both the
drift rate and the density of the medium are varied. O
findings agree well with theoretical predictions@2,13–15#
and experimental results@3,6,10,11# on the elongation of the
polymer conformations in a flow through porous media. O
results indicate that the most probable shape of a chai
such a drift is a hooflike one with both ends pointing in t
direction of the drift, as suggested by the observed decre
at high drift rates of the ratiôRee

2 &/^Rg
2& below its equilib-

rium value of 6.
We confirm earlier results both by experiment@3,11# and

by computer simulations@18,19# of a non-Newtonian flow of
the polymer liquid, expressed in an anomalously sharp
crease of the mobility when the bias exceeds some thres

FIG. 12. Log-log plot of longitudinal and transversal effectiv
diffusivity Deff vs time for several values of the biasB. The solid
line indicates the diffusion when no bias is applied. HereN
532,Cob50.25, andBc'0.27.
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value. On the grounds of a specific relaxation time, rep
senting the inner mobility of the driven chain, we sugges
simple phenomenological model that fits well to our data
the dynamics of the chains. Basically the model assumes
at low drift rates the interaction of a polymer with an o
stacle is like an elastic collision of hard spheres, while
supercritical drift rates the force acting on the driven m
ecule is high enough to overcome the entropic barrier
press it to the frozen obstacles, which leads to a sharp
crease of the capture time.

The model is elucidated by the analysis of the longitu
nal and transversal components of the effective diffusivity
h.
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the driven chains in a moving coordinate system where
drift motion is eliminated and only Brownian motion sti
persists. The observed strong decrease of the transv
component of the diffusivity at growing obstacle dens
makes bypassing of the obstacles extremely slow and
decreases its overall drift velocity.
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